Меню

Самодельный измеритель свч-излучения. Самодельный измеритель свч-излучения Работа прибора по принципу сканирования радио эфира

Газобетонный дом

Хочу представить схему устройства, которое имеет чувствительность к высокочастотному электромагнитному излучению. В частности, его можно применить для индикации входящих и исходящих вызовов мобильного телефона. Например, если телефон находится на беззвучном режиме, то это устройство позволит быстрее заметить входящий звонок или SMS.

Все это помещается на монтажную плату длиной 7 см.

Большую часть платы занимает схема индикации.

Также здесь присутствует антенна.


Антенной может служить отрезок любого провода длиной не менее 15 см. Я сделал ее в виде спирали, похожую на катушку. Ее свободный конец просто припаян к плате, чтобы он не болтался. Было испробовано много разных форм антенны, но я пришел к выводу, что важнее не форма, а её длина, с которой вы можете поэксперементировать.

Давайте рассмотрим схему.


Здесь собран усилитель на транзисторах.
В качестве транзистора VT1 использован КТ3102ЕМ. Решил выбрать именно его, потому что он имеет очень хорошую чувствительность.

Все остальные транзисторы (VT2-VT10) это 2N3904.

Рассмотрим схему индикации: транзисторы VT4-VT10 здесь являются ключевыми элементами, каждый из которых включает соответствующий светодиод при поступлении сигнала. В роли транзисторов этой шкалы могут быть использованы любые, можно даже КТ315, но при пайке удобнее использовать транзисторы в корпусе ТО-92 из-за удобного расположения выводов.
Здесь использованы пороговые диоды (VD3-VD8), и поэтому в каждый момент времени светится только один светодиод, показывая уровень сигнала. Правда этого не происходит по отношению к излучению мобильного телефона, так как сигнал постоянно пульсирует с большой частотой, вызывая свечение почти всех светодиодов.


Количество, "светодиодно-транзисторных" ячеек не следует делать больше восьми. Номиналы базовых резисторов здесь одинаковые и составляет 1 кОм. Номинал будет зависеть от коэффициента усиления транзисторов, при использовании КТ315 следует тоже использовать резисторы на 1 кОм.

В качестве диодов VD1, VD2 желательно использовать диоды Шоттки, так как они имеют меньшее падение напряжения, однако все работает даже при использовании распространенного 1N4001. Один из них (VD1 или VD2) можно исключить, если индикация будет слишком зашкаливать.
Все остальные диоды (VD3 - VD8) это те же самые 1N4001, но можно попробовать использовать любые имеющиеся под рукой.

Конденсатор С2 - электролитический, его оптимальная емкость от 10 до 22 мкФ, он на доли секунды задерживает погасание светодиодов.

Номинал резисторов R13 И R14 зависит от потребляемого светодиодами тока, и будет лежать в пределе от 300 до 680 Ом, но номинал резистора R13 может быть изменен в зависимости от питающего напряжения или при недостаточной яркости светодиодной шкалы. Вместо него можно припаять подстроечный резистор и добиться желаемой яркости.

На плате имеется переключатель, который включает некий "турбо режим" и пропускает ток в обход резистора R13, вследствие чего увеличивается яркость шкалы. Я его использую при питании от батарейки типа крона, когда она подсаживается и шкала светодиодов тускнеет. На схеме переключатель не указан, т.к. он не обязателен.

После подачи питания светодиод HL8 начинает гореть сразу и просто указывает на то, что устройство включено.

Питается схема напряжением от 5 до 9 Вольт.

Далее можно изготовить для него корпус, например из прозрачного пластика, а в качестве основания можно использовать фольгированный текстолит. Подключив антенну к металлизации платы, возможно удастся повысить чувствительность этого индикатора высокочастотных излучений.

Кстати, на излучение микроволновки он тоже реагирует.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ3102ЕМ

1 В блокнот
VT2-VT10 Биполярный транзистор

2N3904

9 В блокнот
VD1 Диод Шоттки

1N5818

1 Любой диод Шоттки В блокнот
VD2-VD8 Выпрямительный диод

1N4001

7 В блокнот
C1 Керамический конденсатор 1 - 10 нФ 1 В блокнот
C2 Электролитический конденсатор 10 - 22 мкФ 1 В блокнот
R1, R4 Резистор

1 МОм

2 В блокнот
R2 Резистор

470 кОм

1 В блокнот
R3, R5 Резистор

10 кОм

2

Прибор для измерения электромагнитного излучения позволяет выявить негативные волны, идущие от передающих электричество), бытовой техники, электрооборудования. Ионизирующие и неионизирующие потоки невозможно пощупать или увидеть. Несмотря на это, они могут отрицательно влиять на здоровье человека. Между прочим, ученые всего мира продолжают дискуссии о пользе и вреде этих сигналов (ультрафиолетовое, рентгеновское излучение, радиоволны).

Большая опасность таится не в отдельно взятой волне, а в накоплении электромагнитного фона, чему подвержены все живые организмы. Предполагают, что это может приводить к мутациям, изменениям ДНК и раковым заболеваниям.

Профессиональные модификации

Рассмотрим характеристики и возможности приспособлений для измерения ЭМИ, которые используются в экологических службах. Наиболее популярными и точными считаются модификации ПЗ-41 и ПЗ-31.

Прибор для измерения электромагнитного излучения ПЗ-31 предназначен для определения среднеквадратичных параметров интенсивности электрических и магнитных полей. Кроме того, он измеряет амплитуду и импульсы модуляции, концентрацию потока энергии, соответствие электромагнитных полей стандартам СаНПиН и ГОСТА.

Возможности устройства ПЗ-31:

  • Фиксирование усредненных показаний результатов текущих параметров концентрации потока энергии и интенсивности магнитных полей за истекшие шесть минут.
  • Отбор и сохранение в оперативной памяти полученной информации с возможностью вывода сведений и предельных значений в течение трех с половиной дней работы (от усредненных до предельных значений в диапазоне 1-832).
  • Исследование местоположения излучения.
  • Выдача звукового сигнала при достижении предельных показателей.

Особенности

Прибор для измерения электромагнитного излучения ЛЭП и других источников марки ПЗ-31 обладает следующим частотным диапазоном:

  • По отношению к электрическому полю - 0,03-300 МГц при разности измерения от 2 до 600 В/м.
  • В части магнитного компонента - 0,01-30 МГц (0,5-16 А/м).
  • В плане концентрирования потока энергии - 300-40000 МГц (0,265-100000 мкВт/кв. см).

Основными плюсами устройства является компактность, малый вес, простота в эксплуатации, длительность работы не менее 60 часов.

ПЗ-41

Этот прибор для измерения электромагнитного излучения в квартире также подходит в качестве тестера при аттестации рабочего места. У него выше точность по выявлению неионизирующих волн. Приспособление обладает широким охватом всевозможных частот, включая длинные сигналы и микроволны. Агрегат позволяет произвести высокоточные замеры радиоактивности любого электрического оборудования.

Меры предосторожности

Абсолютно обезопасить себя от негативного воздействия ЭМИ в современном мире невозможно. Тем не менее прибор для измерения электромагнитного излучения от ЛЭП и других источников электричества позволит выявить особо опасные зоны и предпринять соответствующие меры.

Правила безопасности:

  • Желательно не устанавливать бытовые устройства в зоне отдыха, что даст возможность минимизировать воздействие вредного излучения.
  • Стараться чаще бывать на природе, вдали от любых источников электричества.
  • Регулярно принимать душ или ванну, что позволяет уменьшить статический фон организма, который вырабатывает собственное электромагнитное поле.
  • Своевременно менять технику, поскольку некоторые детали после истечения гарантированного срока начинают выделять больше радиоактивных волн.

Как сделать прибор для измерения электромагнитного излучения своими руками?

Это устройство не выдает показатели, однако позволяет услышать электромагнитное поле. Для его изготовления потребуется старый кассетный плеер и клей. Мини-магнитофон необходимо разобрать и вынуть аккуратно основную плату. Главная рабочая деталь - это считывающая головка. Около нее имеется пара проводов на болтах. Крепление следует открутить, а головка останется висеть на шлейфе.

Затем плата помещается обратно в корпус, а оставшийся элемент приклеивается снаружи при помощи клея. В качестве динамика будет служить внешний аналог либо наушники. Прислонив считывающую головку к телевизору, вы услышите электромагнитное излучение. Чем новее телевизионный приемник, тем слабее звук, что говорит о пониженном количестве ЭМИ. Считывать информацию можно на расстоянии до 400 мм. Примечательно, что излучение дают любые мобильные телефоны, зарядка для них и даже телевизионный пульт.

Детектор СВЧ-волн

Схема такого самодельного прибора состоит из нескольких блоков, включающих в себя измерительную головку, питающие источники, микроамперметр, рабочую плату.

Головка для измерения - это вибратор полуволнового типа, к которому присоединяются диоды типа Д-405, дающие возможность выпрямлять ток Кроме того, на нем крепится конденсатор на 1000 пФ на текстолитовой пластине.

Полуволновой вибратор представляет собой пару отрезков трубок диаметром 10 мм и длиной 70 мм. Подойдут заготовки из алюминия или другого немагнитного материала. Минимальное расстояние между краями элементов составляет не более 10 мм, чтобы была возможность размещения диода. Предельная дистанция между торцами труб не должно превышать 150 мм, что соизмеримо с половиной длины волны частоты в 1ГГц.

Чем толще будут трубки, тем меньше вибратор подвергается искажению величины, в зависимости от частоты сигнала. Для точной градации шкалы необходимо использовать калиброванный генератор нужной частоты. Разметку желательно проводить нескольких частот. Такое приспособление позволит ориентировочно измерить ЭМИ, но не является сверхточным устройством. Как альтернатива, имеется возможность приобретения комплекта деталей для создания детектора, который можно собрать самостоятельно, однако погрешность будет и у него.

В заключение

Заботясь о своем здоровье в плане влияния ЭМИ на организм, многие пользователи задумываются, как называется прибор для измерения электромагнитного излучения? Выше рассмотрены несколько профессиональных и самодельных моделей. Если вы озабочены возможностью проявления негативного поля, лучше обратиться к специалистам. Приблизительные значения можно выявит при помощи бытовых и самодельных приспособлений.

Рассмотрим принцип работы детектора.

Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности.

Самым существенным недостатком является низкая чувствительность таких приемников. Для того, чтобы уверенно обнаружить изменение тока диода под действием СВЧ поля, требуется амплитуда СВЧ на диоде в несколько десятков милливольт. Это очень низкая чувствительность, она соответствует обнаружению передатчика 10 мВт на расстоянии всего нескольких метров.

Чтобы резко повысить чувствительность детектора не усложняя СВЧ головки (т.е. без усилителей, преобразователей и т.п.), была разработана схема детекторного СВЧ приемника с модулируемой задней стенкой волновода.

Детектор СВЧ поля с рупорной антенной

СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.

Рассмотрим процесс детектирования.

СВЧ сигнал принятый рупорной (или диэлектрической) антенной поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих волн. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки - он будет в узле (т.е. минимуме) поля, а если на расстоянии четверти волны - то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным УНЧ.

Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при падении СВЧ поля с VD1 будет снят продетектированный сигнал той же частоты. Этот сигнал будет противофазен модулирующему (что с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.

То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей. Из СВЧ техники потребуется изготовить по чертежам головку, которая не требует никакой настройки.

Рассмотрим на примере рабочую конструкцию детектора СВЧ поля "Антирадар".



Волновод и рупор

Волновод и рупор выполняется из тонкой меди или луженой жести. Можно использовать и фольгированный стеклотекстолит, предварительно отполировав фольгу и покрыв ее спиртоканифольным флюсом (чтобы не окислялась).

Необходимо соблюдать особую осторожность при обращении с СВЧ диодами. Они боятся электростатического электричества и при пробое чувствительность по СВЧ полю падает на порядок и более. При проверке тестером, пробитый электростатикой диод ведет себя точно также, как и исправный. Поэтому при работе с СВЧ диодами надо соблюдать те же меры предосторожности, что и при работе с МОП транзисторами.

Принципиальная схема электронной начинки детектора СВЧ поля.



Схема электронной начинки детектора СВЧ поля

Изобретение относится к радиотехнике СВЧ и может быть использовано в устройствах детектирования СВЧ-сигналов. Техническим результатом является повышение чувствительности. Технический результат достигается за счет выполнения в отрезке 3 линии передачи выреза 6 длиной /2, где - средняя рабочая длина волны в линии, и размещения в вырезе 6 проводящего СВЧ-элемента 7, связанного с отрезком 3 посредством встречно включенных СВЧ-диодов 8 и 9 и конденсатора 11. 2 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2350973

Изобретение относится к радиотехнике сверхвысоких частот (СВЧ) и может быть использовано для детектирования СВЧ-сигналов.

Известен детектор СВЧ, реализованный в коаксиальном исполнении (патент США №3693103, НКИ 329/162, 1972 г.). Недостатком указанного детектора СВЧ является невысокая чувствительность.

В качестве прототипа заявляемого технического решения выбрана амплитудная детекторная секция СВЧ, являющаяся по своему функциональному назначению детектором СВЧ-сигнала (авторское свидетельство СССР №1483389, кл. G01R 21/12, 1989 г.). Детектор СВЧ состоит из отрезка линии передачи, в котором выполнен продольный вырез длиной /4, где - средняя рабочая длина волны в линии. Ширина выреза не превышает половины ширины отрезка линии передачи. В вырезе установлены последовательно соединенные СВЧ-диод и конденсатор. При подаче на входной СВЧ-соединитель падающей СВЧ-мощности и подсоединения к выходному СВЧ-соединителю согласованной СВЧ-нагрузки продетектированное напряжение выводится из точки соединения СВЧ-диода с конденсатором через низкочастотный фильтр на низкочастотный соединитель.

Недостатком указанного детектора СВЧ является невысокая чувствительность, обусловленная тем, что СВЧ-диод работает только в течение половины периода падающей СВЧ-мощности из-за его расположения в вырезе отрезка линии передачи длиной /4.

Задача, решаемая изобретением, - повышение чувствительности.

Указанная задача решается тем, что в детекторе СВЧ, содержащем корпус, отрезок линии передачи, в котором выполнен продольный вырез, ширина которого не превышает половины ширины отрезка линии передачи, входной и выходной СВЧ-соединители, низкочастотный фильтр, подсоединенный к низкочастотному соединителю, и конденсатор, длина продольного выреза выбрана равной половине средней рабочей длины волны в линии; в упомянутом вырезе размещен проводящий СВЧ-элемент, концы которого соединены с отрезком линии передачи посредством встречно включенных СВЧ-диодов, при этом проводящий СВЧ-элемент в точке, равноотстоящей от его концов, соединен с конденсатором, подсоединенным к отрезку линии передачи, и с низкочастотным фильтром.

Проводящий СВЧ-элемент может быть выполнен в виде отрезка полосковой или коаксиальной линии передачи.

Изобретение поясняется чертежами. На фиг.1 показана конструкция детектора СВЧ, на фиг.2 приведена его схема электрическая принципиальная.

Детектор СВЧ состоит из согласованных входного и выходного СВЧ-соединителей 1 и 2 соответственно и отрезка 3 линии передачи, выполненной на СВЧ-диэлектрической пластине 4, которая закреплена в корпусе 5. В отрезке 3 выполнен продольный вырез 6 длиной /2, где - средняя рабочая длина волны в линии. Ширина выреза 6 рассчитывается по наилучшему КСВН (коэффициенту стоячей волны нагрузки) и не превышает половины ширины отрезка 3. В вырезе 6 с зазором относительно отрезка 3 размещен проводящий СВЧ-элемент 7, концы которого соединены с отрезком 3 посредством встречно включенных СВЧ-диодов 8 и 9. Элемент 7 может быть выполнен в виде отрезка полосковой или коаксиальной линии передачи.

В точке 10, равноотстоящей от концов проводящего СВЧ-элемента 7 (на расстоянии /4 от них), элемент 7 подключен к конденсатору 11, связанному с отрезком линии передачи 3. К точке 10 подключен одним концом низкочастотный фильтр 12, другой конец которого подсоединен к низкочастотному (НЧ) соединителю 13. В режиме детектирования падающей СВЧ-мощности к выходному СВЧ-соединителю 2 подключается согласованная СВЧ-нагрузка 14. Внешние проводники соединителей 1, 2 и 13 соединены с корпусом 5.

Заявляемый детектор СВЧ работает следующим образом. Сигнал СВЧ подается на входной СВЧ-соединитель 1, первую половину периода СВЧ-волны детектируется СВЧ-диодом 8 и через конденсатор 11 поступает в согласованную СВЧ-нагрузку 14. Во второй половине периода СВЧ-волны сигнал СВЧ проходит через конденсатор 11, детектируется СВЧ-диодом 9 и поступает в согласованную нагрузку 14. Постоянный ток смещения СВЧ-диодов 8 и 9 протекает по цепи: корпус 5, согласованная СВЧ-нагрузка 14, выходной СВЧ-соединитель 2, СВЧ-диоды 8 и 9, точка 10 соединения конденсатора 11 с проводящим СВЧ-элементом 7, фильтр 12, низкочастотный соединитель 13, входное сопротивление внешней низкочастотной нагрузки, корпус 5.

Высокая чувствительность по напряжению и, соответственно, высокий уровень выходного продетектированного низкочастотного напряжения обеспечиваются в заявляемом детекторе СВЧ за счет выполнении в отрезке линии передачи 3 выреза 6 длиной /2 и размещения в вырезе 6 проводящего СВЧ-элемента 7, связанного с отрезком 3 линии передачи посредством встречно включенных СВЧ-диодов 8 и 9 и конденсатора 11, что позволяет детектировать СВЧ-сигнал в оба полупериода падающей СВЧ-волны. В диапазоне частот от 1,5 ГГц до 10 ГГц чувствительность по напряжению составляет не менее 3 В/мВт, а в диапазоне частот от 4 ГГц до 8 ГГц превышает 15 В/мВт.

Детектор СВЧ может быть использован в качестве смесителя СВЧ, при этом напряжения входного сигнала и гетеродина подаются на входной и выходной СВЧ-соединители соответственно, а сигнал промежуточной частоты снимается с низкочастотного соединителя.

Детектор СВЧ может быть реализован в полосковом и коаксиальном вариантах при выполнении проводящего СВЧ-элемента в виде отрезка полосковой или коаксиальной линии передачи соответственно.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Детектор СВЧ, содержащий корпус, отрезок линии передачи, в котором выполнен продольный вырез, ширина которого не превышает половины ширины отрезка линии передачи, входной и выходной СВЧ-соединители, низкочастотный фильтр, подсоединенный к низкочастотному соединителю, и конденсатор, отличающийся тем, что длина продольного выреза выбрана равной половине средней рабочей длины волны в линии; в упомянутом вырезе размещен проводящий СВЧ-элемент, концы которого соединены с отрезком линии передачи посредством встречно включенных СВЧ-диодов, при этом проводящий СВЧ-элемент в точке, равноотстоящей от его концов, соединен с конденсатором, подсоединенным к отрезку линии передачи, и с низкочастотным фильтром.

2. Детектор СВЧ по п.1, отличающийся тем, что проводящий СВЧ-элемент выполнен в виде отрезка полосковой линии передачи.

3. Детектор СВЧ по п.1, отличающийся тем, что проводящий СВЧ-элемент выполнен в виде отрезка коаксиальной линии передачи.