Меню

Импульсный стабилизатор сварочной дуги. Стабилизаторы горения дуги Принцип работы понижающего импульсного стабилизатора

Утеплитель

Изобретение относится к сварочному производству и может быть использовано при производстве или модернизации сварочных источников питания. Цель изобретения - повышение мощности и стабильности поджигающих дугу импульсов за счет изменения схемы ключевого каскада, что позволяет улучшить эксплуатационные свойства стабилизатора, расширить сферу его применения. Импульсный стабилизатор сварочной дуги содержит два трансформатора 1, 2, два тиристора 7, 8, четыре диода 10 13, конденсатор 9, резистор 14. 1 ил.

Изобретение относится к сварочному производству и может быть использовано при производстве или модернизации сварочных источников питания. Целью изобретения является разработка устройства, обеспечивающего повышенную мощность и стабильность поджигающих дугу импульсов за счет изменения схемы ключевого каскада, что позволяет улучшить эксплуатационные свойства стабилизатора, расширить сферу его применения. Для стабилизации процесса дуговой сварки на переменном токе в начале каждого полупериода сварочного напряжения на дугу подают кратковременный мощный импульс тока, сформированный за счет перезаряда конденсатора, подключаемого в цепь питания дуги с помощью тиристорных ключей. В известной схеме конденсатор не может перезарядиться до амплитудных значений питающих его напряжений, что снижает мощность импульса, поджигающего дугу. При этом на мощность этого импульса сказывается момент открывания тиристоров относительно начала полупериода напряжения, питающего дугу. Это связано с досрочным закрыванием тиристоров, так как ток зарядки конденсатора, протекающий через них, определяется реактивным сопротивлением конденсатора. Этот ток может поддерживать тиристор открытым до тех пор, пока он превышает ток удержания тиристоров в открытом состоянии. Указанное условие обеспечивается (после прихода на управляющий электрод тиристора отпирающего импульса) в течение весьма короткого времени, после чего тиристор закрывается. На чертеже изображена электрическая схема стабилизатора. Позициями 1 и 2 соответственно обозначены дополнительный и сварочный трансформаторы; 3 и 4 точки подключения к схемам ключевого тиристорного каскада; 5 и 6 соответственно сварочный электрод и свариваемое изделие; 7 и 8 ключевые тиристоры; 9 конденсатор; 10 и 11 силовые диоды; 12 и 13 маломощные диоды; 14 резистор. На схеме не показано устройство формирования управляющих импульсов, отпирающих тиристоры. Управляющие сигналы U y с этого устройства поступают на соответствующие электроды тиристоров 7 и 8. Устройство работает следующим образом. При появлении на дуге положительной полуволны напряжения и включении в начале этого полупериода тиристора 8 конденсатор 9 мгновенно зарядится через него и диод 11. Но тиристор при этом остается открытым, так как до момента достижения на вторичной обмотке трансформатора 1 амплитудного значения напряжения ток через тиристор протекает по двум цепям: тиристор 8 диод 11 конденсатор 9 и тиристор 8 диод 13 резистор 14. Ток, протекающий по первой цепи, весьма мал (недостаточен для удержания тиристора в открытом состоянии), а по второй цепи достаточен для поддержания тиристора открытым. По мере роста напряжения данного полупериода до амплитудного его значения конденсатор дозаряжается до суммы этого напряжения с напряжением на дуге. Далее напряжение на вторичной обмотке трансформатора 1 начнет снижаться и напряжением заряженного конденсатора 9 диод 13 закроется, что повлечет за собой запирание тиристора 8 и конденсатор 9 будет оставаться заряженным экстремальным значением суммы указанных напряжений до изменения полярности напряжения на дуге. После смены полярности в начале очередного полупериода откроется управляющим импульсом тиристор 7 и конденсатор мгновенно перезарядится до суммы действующих в этот момент напряжений на вторичных обмотках трансформаторов 1 и 2. Открывается диод 12, поддерживая тиристор 7 открытым до момента достижения амплитудного значения напряжения на вторичной обмотке трансформатора 1. Соответственно и конденсатор 9 перезаряжается до суммы амплитудного значения указанного напряжения и напряжения на дуге. Введение указанных элементов в электрическую схему стабилизатора позволяет увеличить размах импульса по амплитуде в два и более раза и сделать его (размах) независимым от момента открывания тиристоров относительно начала полупериода напряжения на дуге. В приведенных рассуждениях упоминается только амплитудное значение напряжения на вторичной обмотке трансформатора 1 и ничего не говорится о характере изменения напряжения на дуге. Дело в том, что электрическая дуга обладает существенной стабилизирующей способностью и в процессе ее горения переменное напряжение на ней имеет прямоугольную форму с плоской вершиной (меандр), т.е. напряжение на дуге в течение полупериода является практически постоянным по амплитуде (не изменяется по величине) и не оказывает влияния на характер заряда конденсатора 9. Применение изобретения позволило повысить амплитуду поджигающего дугу импульса в 1,8.2 раза, стабилизировать ее при изменении в широких пределах момента открывания тиристоров относительно начала полупериода переменного напряже- ния на дуге. За счет обеспечения указанных эффектов обеспечена возможность интенсивного разрушения окисной пленки при аргонодуговой сварке алюминия и его сплавов, стабилизировать процесс горения дуги в широком диапазоне сварочных токов, особенно в сторону его снижения. Отмечено высокое качество формирования сварочного шва.

Формула изобретения

ИМПУЛЬСНЫЙ СТАБИЛИЗАТОР СВАРОЧНОЙ ДУГИ, включающий последовательно соединенные вторичную обмотку сварочного трансформатора, цепь из встречно параллельно включенных тиристоров со схемой их управления, конденсатора и вторичной обмотки дополнительного трансформатора, включенной согласно вторичной обмотке сварочного трансформатора, которая соединена со сварочными электродами, отличающийся тем, что в него введены два силовых и два маломощных диода и резистор, причем силовые диоды включены последовательно согласно тиристорам, точка соединения одного тиристора и катода первого силового диода подключена к катоду первого маломощного диода, а точка соединения катода другого тиристора и анода второго силового диода подключена к аноду второго маломощного диода, анод и катод соответственно первого и второго маломощных диодов подключены через резистор к обкладке конденсатора, соединенной с вторичной обмоткой дополнительного трансформатора.

Осциллятор - это устройство, преобразующее ток промышленной частоты низкого напряжения в ток высокой частоты (150-500 тыс. Гц) и высокого напряжения (2000-6000 В), наложение которого на сварочную цепь облегчает возбуждение и стабилизирует дугу при сварке.

Основное применение осцилляторы нашли при аргно-дуговой сварке переменным током неплавящимся электродом металлов малой толщины и при сварке электродами с низкими ионизирующими свойствами покрытия. Принципиальная электрическая схема осциллятора ОСПЗ-2М показана на рис. 1.

Осциллятор состоит из колебательного контура (конденсатора С5, в качестве индукционной катушки используется подвижная обмотка трансформатора ВЧТ и разрядника Р) и двух индуктивных дроссельных катушек Др1 и Др2, повышающего трансформатора ПТ, высокочастотного трансформатора ВЧТ.

Колебательный контур генерирует ток высокой частоты и связан со сварочной цепью индуктивно через высокочастотный трансформатор, выводы вторичных обмоток которого присоединяются: один к заземленному зажиму выводной панели, другой - через конденсатор С6 и предохранитель Пр2 ко второму зажиму. Для защиты сварщика от поражения электрическим током в цепь включен конденсатор С6, сопротивление которого препятствует прохождению тока высокого напряжения и низкой частоты в сварочную цепь. На случай пробоя конденсатора С6 в цепь включен плавкий предохранитель Пр2. Осциллятор ОСПЗ-2М рассчитан на подключение непосредственно в двухфазную или однофазную сеть напряжением 220 В.


Рис. 1.: СТ - сварочный трансформатор, Пр1, Пр2 - предохранители, Др1, Др2 - дроссели, С1 - С6 - конденсаторы, ПТ - повышающий трансформатор, ВЧТ - высокочастотный трансформатор, Р - разрядник Рис. 2. : Тр1 - трансформатор сварочный, Др - дроссель, Тр2 - повышающий трансформатор осциллятора, Р - разрядник, С1 - конденсатор контура, С2 - защитный конденсатор контура, L1 - катушка самоиндукции, L2 - катушка связи

При нормальной работе осциллятор равномерно потрескивает, и за счет высокого напряжения происходит пробой зазора искрового разрядника. Величина искрового зазора должна быть 1,5-2 мм, которая регулируется сжатием электродов регулировочным винтом. Напряжение на элементах схемы осциллятора достигает нескольких тысяч вольт, поэтому регулирование необходимо выполнять при отключенном осцилляторе.

Осциллятор необходимо зарегистрировать в местных органах инспекции электросвязи; при эксплуатации следить за его правильным присоединением к силовой и сварочной цепи, а также за исправным состоянием контактов; работать при надетом кожухе; кожух снимать только при осмотре или ремонте и при отсоединенной сети; следить за исправным состоянием рабочих поверхностей разрядника, а при появлении нагара - зачистить их наждачной бумагой. Осцилляторы, у которых первичное напряжение 65 В, подключать к вторичным зажимам сварочных трансформаторов типа ТС, СТН, ТСД, СТАН не рекомендуется, так как в этом случае напряжение в цепи при сварке понижается. Для питания осциллятора нужно применять силовой трансформатор, имеющий вторичное напряжение 65-70 В.

Схема подключения осцилляторов М-3 и ОС-1 к сварочному трансформатору типа СТЭ показана на рис.2. Технические характеристики осцилляторов приведен в таблице.

Технические характеристики осцилляторов

Тип Первичное
напряжение, В
Вторичное напряжение
холостого хода, В
Потребляемая
мощность, Вт
Габаритные
размеры, мм
Масса, кг
М-3
ОС-1
ОСЦН
ТУ-2
ТУ-7
ТУ-177 ОСПЗ-2М
40 - 65
65
200
65; 220
65; 220
65; 220
220
2500
2500
2300
3700
1500
2500
6000
150
130
400
225
1000
400
44
350 x 240 x 290
315 x 215 x 260
390 x 270 x 310
390 x 270 x 350
390 x 270 x 350
390 x 270 x 350
250 х 170 х 110
15
15
35
20
25
20
6,5

Импульсные возбудители дуги

Это такие устройства, которые служат для подачи синхронизированных импульсов повышенного напряжения на сварочную дугу переменного тока в момент изменения полярности. Благодаря этому значительно облегчается повторное зажигание дуги, что позволяет снизить напряжение холостого хода трансформатора до 40-50 В.

Импульсные возбудители применяют только для дуговой сварки в среде защитных газов неплавящимся электродом. Возбудители с высокой стороны подключаются параллельно к сети питания трансформатора (380 В), а на выходе - параллельно дуге.

Мощные возбудители последовательного включения применяют для сварки под флюсом.

Импульсные возбудители дуги более устойчивы в работе, чем осцилляторы, они не создают радиопомех, но из-за недостаточного напряжения (200-300 В) не обеспечивают зажигания дуги без соприкосновения электрода с изделием. Возможны также случаи комбинированного применения осциллятора для начального зажигания дуги и импульсного возбудителя для поддержания ее последующего стабильного горения.

Стабилизатор сварочной дуги

Для повышения производительности ручной дуговой сварки и экономичного использования электроэнергии создан стабилизатор сварочной дуги СД-2. Стабилизатор поддерживает устойчивое горение сварочной дуги при сварке переменным током плавящимся электродом путем подачи на дугу в начале каждого периода импульса напряжения.

Стабилизатор расширяет технологические возможности сварочного трансформатора и позволяет выполнять сварку на переменном токе электродами УОНИ, ручную дуговую сварку неплавящимся электродом изделий из легированных сталей и алюминиевых сплавов.

Схема внешних электрических соединений стабилизатора показана на рис. 3, а, осциллограмма стабилизирующего импульса - на рис. 3, б.

Сварка c применением стабилизатора позволяет экономичнее использовать электроэнергию, расширить технологические возможности применения сварочного трансформатора, уменьшить эксплуатационные расходы, ликвидировать магнитное дутье.

Сварочное устройство «Разряд-250». Это устройство разработано на базе сварочного трансформатора ТСМ-250 и стабилизатора сварочной дуги, выдающего импульсы частотой 100 Гц.

Функциональная схема сварочного устройства и осциллограмма напряжения холостого хода на выходе устройства показаны на рис. 4, а, б.



Рис. 3. : а - схема: 1 - стабилизатор, 2 - трансформатор варочный, 3 - электрод, 4 - изделие; б - осцилограмма: 1 - стабилизирующий импульс, 2 - напряжение на вторичной обмотке трансформатора

Рис. 4. а - схема устройства; б - осциллограмма напряжения холостого хода на выходе устройства

Устройство «Разряд-250» предназначено для ручной дуговой сварки переменным током плавящимися электродами любого типа, в том числе предназначенными для сварки на постоянном токе. Устройство может использоваться при сварке неплавящимися электродами, например, при сварке алюминия.

Устойчивое горение дуги обеспечивается подачей на дугу в начале каждой половины периода переменного напряжения сварочного трансформатора импульса напряжения прямой полярности, т. е. совпадающего с полярностью указанного напряжения.

1.7.4. Схема импульсного стабилизатора

Схема импульсного стабилизатора ненамного сложней обычного (рис. 1.9), но она более сложная в настройке. Поэтому недостаточно опытным радиолюбителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное устройство двумя руками - только одной!), не рекомендую повторять эту схему.

На рис. 1.9 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сетевое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзистора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через резистор R2, и через обмотку I трансформатора T1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную. Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, C5, VD4 оно ограничивается на безопасном уровне 400…450 В. Благодаря элементам R5, C5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только падение напряжения на нем превысит 1…1,5 В, транзистор VT2 откроется и замкнет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор С3 ускоряет реакцию VT2. Диод VD3 необходим для нормальной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме - регулируемом стабилитроне DA1.

Для гальванической развязки выходного напряжения от сетевого используется оптрон VO1. Рабочее напряжение для транзисторной части оптрона берется от обмотки II трансформатора T1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивление коллектор-эмиттер фототранзистора VO 1.2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1. Он будет слабее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет «раскачиваться» в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивлением 100…330 Ом.

Налаживание

Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавливают в нижнее (по схеме) положение. Устройство включают и сразу отключают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и С6. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет - генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить транзистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют местами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап : включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VT1, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряжения на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное падение напряжения на выводах DA1 превышает 1,25 В, на выводах светодиода - 1,5 В).

Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100…680 Ом. Следующим шагом настройки требуется установка на выходе устройства напряжения 3,9…4,0 В (для литиевого аккумулятора). Данное устройство заряжает аккумулятор экспоненциально уменьшающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару часов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях

Особый элемент конструкции - трансформатор.

Трансформатор в этой схеме можно использовать только с разрезным ферритовым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преобразователь - однотактный, с постоянным подмагничиванием, поэтому сердечник должен быть разрезным, с диэлектрическим зазором (между его половинками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного аналогичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3…5 мм 2 , обмотка I - 450 витков проводом диаметром 0, 1 мм, обмотка II - 20 витков тем же проводом, обмотка III - 15 витков проводом диаметром 0, 6…0, 8 мм (для выходного напряжения 4…5 В). При намотке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании - см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 - любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь 2 1 э должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, применяют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзисторы рассчитаны на предельное напряжение 300 В, и при малейшем повышении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзисторов KSE13003 и MJE13003 теплоотвод не нужен (в большинстве случаев цоколевка - как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400…600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер - потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление резистора Я1для ограничения амплитуды этого броска нельзя - он будет сильно нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004…4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заменить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

«Общий» провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Из книги Высокочастотный автомобиль автора Бабат Георгий

ПРИНЦИПИАЛЬНАЯ СХЕМА ВЫСОКОЧАСТОТНОГО ТРАНСПОРТА Трехфазный ток с частотой 50 герц из силовой сети (1) через выключатель (2) поступает в трансформатор (3). Выпрямитель (4) преобразует переменный ток высокого напряжения в постоянный. Отрицательный полюс выпрямленного тока

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Проект 2: Схема интерфейса Основой схемы интерфейса является дешифратор 4028. ИС 4028 считывает двоично-десятичный код логики низкого уровня с выхода ИС 74LS373, расположенной на плате УРР, и выдает соответствующие сигналы высокого уровня (см. таблицу соответствий

Из книги Show/Observer МАКС 2011 автора Автор неизвестен

Проект 3: общая схема интерфейса УРР Интерфейс УРР для робота-передвижки является специализированной схемой, предназначенной для конкретной цели. Следующая схема интерфейса (см. рис. 7.8) представляет собой более универсальное устройство, дающее возможность управлять

Из книги Электронные самоделки автора Кашкаров А. П.

Начальная схема управления На рис. 10.10 показан первый тестовый вариант схемы управления ШД. Для буферизации выходных сигналов с шин PIC 16F84 использованы шестнадцатеричные буферы типа 4050. Сигнал с выхода каждого буфера подается на транзистор NPN типа. В качестве таких

Из книги Импульсные блоки питания для IBM PC автора Куличков Александр Васильевич

Электрическая схема Электрическая схема представляет собой электронный ключ, управляемый интенсивностью светового потока. Когда уровень средней окружающей освещенности мал (возможна подстройка порогового значения), то схема отключает питание двигателя редуктора.

Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья

«Фрегат Экоджет»: новая схема самолета и новая бизнес-схема Авиасалон МАКС традиционно выступает смотровой площадкой новых идей в самолетостроении. ФПГ «Росавиаконсорциум» по собственной инициативе разрабатывает программу создания широкофюзеляжного

Из книги Грузовые автомобили. Электрооборудование автора Мельников Илья

3.1.1. Электрическая схема электронных часов на ЖКИ Жидкокристаллический индикатор представляет собой две плоские пластинки из стекла, склеенные по периметру таким образом, чтобы между стеклами оставался промежуток, его заполняют специальными жидкими кристаллами.На

Из книги Системы видеонаблюдения [Практикум] автора Кашкаров Андрей Петрович

3.5.3. Расширенная схема акустического датчика Регулировка усиления слабых сигналов с микрофона ВМ1 осуществляется переменным резистором R6 (см. рис. 3.9). Чем меньше сопротивление данного резистора, тем больше усиление транзисторного каскада на транзисторе VT1. При

Из книги автора

4.4.2. Электрическая схема таймера При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 кОм). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции)

Из книги автора

2.3. Структурная схема Структурная схема импульсного блока питания персонального компьютера конструктива ATX приведена на рис. 2.1. Рис. 2.1. Структурная схема импульсного блока питания фирмы DTK конструктива ATXВходное переменное напряжение 220 В, 50 Гц поступает на входной

Из книги автора

2.4. Принципиальная схема Полная принципиальная схема бестрансформаторного источника питания с максимальной вторичной мощностью 200 Вт фирмы DTK представлена на рис. 2.2. Рис. 2.2. Принципиальная схема бестрансформаторного источника питания на 200 Вт фирмы DTKВсе элементы на

Из книги автора

3.3. Структурная схема Структурная схема импульсного блока питания для компьютеров типа AT/XT, содержащая типовой набор функциональных узлов, представлена на рис. 3.1. Модификации блоков питания могут иметь различия только в схемотехнической реализации узлов с сохранением

Из книги автора

3.4. Принципиальная схема Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством

Из книги автора

Схема, устройство работа В механизм газораспределения входят: распределительный вал и его привод. Передаточные детали – толкатели с направляющими втулками, а при верхнем расположении клапанов еще штанги и коромысла, клапаны, их направляющие втулки и пружины, опорные

Из книги автора

Общая схема электрооборудования Электрооборудование автомобилей представляет собой сложную систему соединенных между собой электроприборово сигнализации, зажигания, предохранителей, контрольно – измерительных приборов, соединительных проводов. Рис.

Из книги автора

2.6. Схема чувствительного видеоусилителя Тем, кто занимается применением схем видеоконтроля на ограниченном участке, будет полезен этот материал. Касаясь возможных вариантов обеспечения охраны в замкнутых помещениях, еще раз хочу отметить, что не всегда рентабельно

Микросхема предназначена для управления мощными импульсными стабилизаторами напряжения, схемами управления электроприводом с током коммутации до 5 А.

В состав микросхемы входят: стабилизатор напряжения, ШИМ, усилитель сигнала рассогласования, компаратор, генератор пилообразного напряжения, узлы температурной и токовой защиты и силовой биполярный транзистор.

Микросхема изготавливается в 8-выводном металлостеклянном корпусе типа 4.106.010.

Рис. 1 Структурная схема микросхемы

Назначение выводов микросхемы представлено в таблице, структурная схема приведена на рис. 1, а типовая схема включения - на рис. 2.

Электрические параметры

Режимы эксплуатации

Примечание: Рассеиваемая мощность в диапазоне температуры от 25 до 125°С снижается линейно на 0,16 Вт/°С.

При монтаже микросхемы необходимо учитывать, что ее корпус электрически связан с общим проводом ее внутренних узлов.

Принцип действия микросхемы основан на ШИМ преобразовании входного напряжения. Выходное напряжение усилителя сигнала рассогласования (УСР) с помощью коммутатора ШИМ сравнивается с напряжением генератора пилообразного напряжения G. Если напряжение генератора не превышает напряжение УСР, то выход коммутатора находится в состоянии лог. «0», а ключевой транзистор в это время открыт. В процессе формирования фронта пилообразного напряжения генератор вырабатывает прямоугольный импульс, который используется для синхронизации ШИМ. Во время действия синхроимпульса ключевой транзистор находится в закрытом состоянии, т.е. передний фронт управляющих импульсов на выходе формирователя (база ключевого транзистора) совпадает с началом формирования линейно нарастающего участка пилообразного напряжения. Этим исключается влияние нелинейности спадающего участка пилообразного напряжения на параметры ШИМ.


Рис. 2 Типовая схема включения

При использовании микросхемы в схемах с заземленным эмиттером ключевого транзистора (выв. 8) значение времязадающего конденсатора, подключаемого к выв. 3, должно быть не менее 0,025 мкФ.

Импульсный стабилизатор горения дуги (ИСГД) представляет собой генератор пиковых импульсов высокого напряжения, подаваемых на дугу в момент перехода тока через нуль. Благодаря этому обеспечива­ется надежное повторное зажигание дуги, что и гарантирует высокую устойчивость горения дуги переменного тока.

Рассмотрим схему стабилизатора СД-3 (рисунок. 5.31). Его основными частями являются трансформатор питания Г, коммутирующий конден­сатор С и тиристорный коммутатор VS 1, VS 2с системой управления А. Стабилизатор питает дугу параллельно основному источнику G - сварочному трансформатору. Сначала проанализируем его работу при хо­лостом ходе сварочного трансформатора. В начале полупериода откры­вается тиристор VS 1, в результате по цепи, показанной тонкой линией, пройдет импульс тока. При этом согласно действующие ЭДС трансфор­матора T источника G создают на конденсаторе заряд с полярностью, указанной на рисунке. Ток заряда конденсатора нарастает до тех пор, пока напряжение на нем не сравняется с суммарным напряжением транс­форматора Г и источника G. После этого ток начинает спадать, что вы­зовет появление в цепи ЭДС самоиндукции, стремящейся сохранить ток неизменным. Поэтому заряд конденсатора С будет продолжаться и да­лее, пока напряжение на конденсаторе не достигнет двойного напряже­ния питания. Напряжение заряда конденсатора, приложенное к VS 1в обратном направлении, закроет тиристор. Во втором полупериоде от­крывается тиристор VS 2, и импульсный ток пойдет в противоположном направлении. В этом случае импульс будет уже мощнее, поскольку он вызывается согласным действием ЭДС трансформаторов T и G , а также заряда конденсатора С. В результате произойдет перезаряд конденсатора до еще более высокого уровня. Такой резонансный характер перезаряда позволяет получить на межэлектродном промежутке стабилизирующие импульсы напряжения с амплитудой около 200 В при сравнительно низком напряжении трансформатора питания около 40 В (рисунок. 5.31, б). Частота генерирования импульсов - 100 Гц. На межэлектродный проме­жуток подается также напряжение от основного источника (рисунок. 5.31, г). При указанной на рисунок. 5.31,афазировке трансформаторов T и G поляр­ности напряжений, подаваемых на межэлектродный промежуток от ос­новного источника (показано пунктирной линией) и от стабилизатора (тонкая линия), противоположны. Такое включение стабилизатора названо встречным. На рисунок. 5.31, в показано напряжение на межэлектродном промежутке при совместном действии стабилизатора и основного источника.

Рисунок. 5.31 – Импульсный стабилизатор горения дуги

Если сменить фазировку основного трансформатора G или стаби­лизатора, то полярности напряжений на дуге от основного источника и от стабилизатора будут совпадать (рисунок. 5.31, а). Такое соединение на­зывается согласным, оно используется в конструкции других стабили­заторов. Повторное зажигание происходит в момент подачи стабили­зирующего импульса, обычно время зажигания не превышает 0,1 мс.



При встречном включении стабилизирующий импульс, хоть и не совпадает по направлению с напряжением трансформатора G, также способствует повторному зажиганию (см. рисунок. 5.31, в). В то же время на рисунок. 5.31, а видно, что часть импульсного тока, проходящая по вто­ричной обмотке G (тонкая линия), совпадает с собственным током этой обмотки (пунктирная линия) и поэтому не препятствует быстро­му нарастанию ее тока до необходимой для повторного зажигания ве­личины.

Стабилизатор СД-3 может быть использован как при ручной сварке покрытым электродом, так и при сварке алюминия неплавящимся элек­тродом. Система управления запускает стабилизатор только после зажи­гания дуги. После обрыва дуги он работает не более 1 секунды, что по­вышает безопасность труда.

Описанный автономный стабилизатор может использоваться в ком­плекте с любым трансформатором для ручной сварки с напряжением холостого хода не ниже 60 В, при этом устойчивость дуги повышается настолько, что становится возможна сварка на переменном токе элек­тродами с фтористо-кальциевым покрытием, у которого стабилизирую­щие свойства считаются низкими.

Более эффективно использование стабилизаторов, встроенных в кор­пус источника. Со встроенными стабилизаторами выпускаются трансформаторы Разряд-160, Разряд-250 и ТДК-315, они имеют реактивную обмотку из трех секций. Переключатель диапазонов, обеспечивающий сначала согласное, а затем встречное соединение реактивной обмотки с первичной, позволяет увеличивать ток семью ступенями. Благодаря использованию импульсного стабилизатора стало возможным снижение напряжения холостого хода трансформаторов до 45 В. А это в свою очередь резко снизило потребляемый из сети ток и массу трансформаторов. В отличие от автономных встроенный стабилизатор запускается с помощью двойного управления - не только за счет обратной связи по напряжению, но еще и по току. Это повышает надежность его работы, в частности предотвращает ложные срабатывания при коротких замы­каниях каплями электродного металла. Со встроенным стабилизатором выпускаются трансформаторы ТДМ-402 с подвижными обмотками и ТДМ-201 с магнитным шунтом.