Меню

Плавный пуск для болгарки своими руками. Плавный пуск для электроинструмента, сделанный своими руками Плавный пуск электроинструмента

Полиэтилен

Схема для плавного пуска

Случающиеся иногда отказы ручного электроинструмента - шлифовальных машин, электрических дрелей и лобзиков - зачастую бывают связаны с их большим пусковым током и значительными динамическими нагрузками на детали редукторов, возникающими при резком пуске двигателя.

Применив микросхему фазового регулятора КР1182ПМ1 , удалось изготовить значительно более простое устройство аналогичного назначения, не требующее налаживания. К нему можно без всякой доработки подключать любой ручной электроинструмент, питающийся от однофазной сети 220 В, 50 Гц.

Пуск и остановка двигателя производятся выключателем электроинструмента, причем в его выключенном состоянии устройство ток не потребляет и может неограниченное время оставаться подключенным к сети.

Схема предлагаемого устройства изображена на рисунке. Вилку ХР1 включают в сетевую розетку, а в розетку XS1 вставляют сетевую вилку электроинструмента. Можно установить и соединить параллельно несколько розеток для инструментов, работающих поочередно.

При замыкании цепи двигателя электроинструмента его собственным выключателем на фазовый регулятор DA1 поступает напряжение. Начинается зарядка конденсатора С2, напряжение на нем постепенно увеличивается. В результате задержка включения внутренних тиристоров регулятора, а с ними и симистора VS1 в каждом последующем полупериоде сетевого напряжения уменьшается, что приводит к плавному нарастанию протекающего через двигатель тока и, как следствие, увеличению его оборотов.

При указанной на схеме емкости конденсатора С2 разгон электродвигателя до максимальных оборотов занимает 2…2,5 с, что практически не создает задержки в работе, но полностью исключает тепловые и динамические удары в механизме инструмента.

После выключения двигателя конденсатор С2 разряжается через резистор R1, и через 2…3 с все готово к повторному запуску. Заменив постоянный резистор R1 переменным, можно плавно регулировать отдаваемую в нагрузку мощность. Она снижается с уменьшением сопротивления.

Резистор R2 ограничивает ток управляющего электрода симистора, а конденсаторы С1 и С3 - элементы типовой схемы включения фазового регулятора DA1.

Все резисторы и конденсаторы припаяны непосредственно к выводам микросхемы DA1. Вместе с ними она помещена в алюминиевый корпус от стартера люминесцентной лампы и залита эпоксидным компаундом. Наружу выведены лишь два провода, подключаемые к выводам симистора.

Перед заливкой в нижней части корпуса просверлено отверстие, в которое вставлен резьбой наружу винт М3. Этим винтом узел закреплен на теплоотводе симистора VS1 площадью 100 см 2 . Такая конструкция показала себя достаточно надежной при эксплуатации в условиях повышенной влажности и запыленности.

Какого-либо налаживания устройство не требует. Симистор можно использовать любой, класса по напряжению не менее 4 (то есть с максимальным рабочим напряжением не менее 400 В) и с максимальным током 25…50 А. Благодаря плавному старту двигателя пусковой ток не превышает номинального. Запас необходим лишь на случай заклинивания инструмента.

Устройство испытано с электроинструментами мощностью до 2,2 кВт. Так как регулятор DA1 обеспечивает протекание тока в цепи управляющего электрода симистора VS1 в течение всей активной части полупериода, нет ограничения на минимальную мощность нагрузки.

Прототип конструкции на рисунке ниже использовался для регулировки накала ламп, то есть для работы на чисто активную нагрузку.


Основой конструкции является микросхема К1182ПМ1Р. Она узкоспециализированная, и как это сегодня не странно звучит, отечественного производства. В случае необходимости время старта можно увеличить, поставив большую емкость конденсатора С3. Пока идет заряд этого конденсатора, электродвигатель плавно увеличивает обороты до максимума. Резистор сопротивлением 68 кОм оптимально выбран для нашей схемы. Если хотите сделать регулятор мощности, тогда нужно заменить сопротивление R1 переменным. Сопротивление в 100 кОм, и больше.

  • Если добавить в силовую часть схемы симистор VS1 типа ТС-122-25, можно плавно запускать практически любую болгарку, мощностью от 600 до 2700 Вт. Для подключения электроинструмента мощностью до 1500 Вт, вполне хватит симисторов BT139, BT140. Симистор в рассматриваемой схеме полностью не отпирается, он отрезает около 15В сетевого напряжения, но это падение не сказывается на работе электроинструмента. Но при сильном нагреве последнего, обороты подключенного устройства существенно падают. Поэтому рекомендована установка симистора на радиатор.
  • В роли отличного корпуса из изоляционного материала подойдет типовая распределительная коробка. К ней привинчивается розетка и подсоединяется кабель с вилкой, что делает эту конструкцию очень похожей на удлинитель сделанный своими руками.

    Если хотите можно собрать чуть более сложную схему плавного пуска. Она является типовой для модуля XS–12. Он устанавливается в электроинструмент при заводском производстве многих фирм.


    Если хотите регулировать обороты подсоединенного электродвигателя, тогда конструкция немного усложняется: т.к устанавливается подстроечный резистор, на 100 кОм, и регулировочное сопротивление на 50 кОм.

    В целях экономии, можно оснастить регулятором оборотов типовую болгарку. Такой регулятор для шлифования корпусов различной радиоэлектронной аппаратуры является незаменимым инструментом в арсенале радиолюбителя.

    www.texnic.ru

    Плавный пуск болгарки своими руками продлит жизнь вашего инструмента и сэкономит средства

    Выбирая болгарку, человек задумывается о продолжительной службе инструмента. Считается: чем дороже инструмент, тем дольше он прослужит. Но иногда средств на дорогую покупку не хватает и приходится приобретать недорогую модель. В недорогих моделях болгарок отсутствует регулятор набора оборотов. Другие устройства, например, дрель, шуруповерт и перфоратор имеют регулятор набора скорости. А у углошлифовальной машины присутствует только кнопка включения. Тем самым болгарка быстрее ломается, потому что под действием резкого пуска из строя выходят редуктор и обмоточные провода якоря.

    Возможны следующие ситуации:

    • Действие высокой нагрузки на ось редуктора вызывает инерционный скачок, приводящий в отдельных случаях к выпадению инструмента из рук.
    • Величина крутящего момента в период пуска способствует изнашиванию шестерен редуктора.
    • Разрушение круга при перегрузке.

    Можно произвести модернизацию инструмента и получить в итоге болгарку с плавным пуском. Модернизацию по силам сделать самому. Плавный пуск для болгарки своими руками изготавливается двумя способами. Первый способ подразумевает покупку готового приспособления, у которого в наличии уже есть регулятор скорости и замедление начала работы двигателя в момент запуска. Это приспособление помещается внутрь устройства. Второй способ заключается в изготовке схемы, которая сделает пуск плавнее. Если происходит обрыв питающего шнура, схема подключается в обрыв.

    План изготовки схемы

    Схема плавного пуска болгарки предполагает использование известной микросхемы КР118ПМ1 для фазовой регулировки. В конструкции присутствуют семисторы. Умножение рабочей частоты достигается посредством установки резисторов, пропускающих ток в одном направлении. Преимуществом этой схемы является простота и отсутствие специальной наладки после сборки. Таким методом может воспользоваться любой человек, не имеющий специальных навыков, но работающий с паяльником.

    Основные принципы разработки схемы:

    • При выборе конденсатора С3 время разгона можно повысить;
    • Установленный резистор R1 с сопротивлением 68 кОм не требует замены на переменное сопротивление, так как обеспечивает ровный пуск моделей различной силы (0,6–1,5 кВт);
    • При желании оснащения регулятором мощности резистор R1 заменяется переменным сопротивлением. Величина более 100 кОм не способствует снижению напряжения на выходе. Выключения угловой шлифмашины происходят при замыкании ножек микросхемы;
    • При употреблении семистора вида ТС-122-25 происходит плавный запуск моделей мощностью 0,6–2,7 кВт. А также в этом случае имеется запас по мощности при заклинивании. Для моделей до 1500 Вт будут достаточны менее мощные семисторы (ВТ139 и Вт140).

    Процесс работы схемы

    Когда происходит замыкание кнопок пуска, ток поступает на микросхему. Напряжение на главном конденсаторе начинает возрастать. Оно доходит до рабочего значения по мере заряда. В зависимости от заряда конденсатора происходит открытие тиристоров. Открытие семистора VS1 осуществляется также с промедлением. Отдельный полупериод переменного напряжения характеризуется уменьшением задержки. В итоге на входе напряжение в инструмент повышается плавно. На основе этого запуск двигателя получается плавным. В итоге обороты наращиваются не быстро и инерционных скачков на редуктор не поступает.

    Установленный конденсатор С2 способствует пуску в течение 2 сек. Этого времени хватает для начала функционирования, а быстрый старт не повышает нагрузку. Выключение инструмента приводит к разрядке конденсатора С2 посредством сопротивления R1. При емкости 68 кОм период рязрядки длится 3 сек. После этого можно вновь запускать устройство.

    Значение силы тока, движущегося через вход семистора VS1, регулирует резистор R2. Конденсатор С1 считается деталью управления микросхемы. Резисторы и конденсаторы крепятся к ножкам микросхемы путем припаивания.

    Подключение функции плавного пуска

    Эта микросхема сопоставима с любым устройством, которое предусматривает напряжение 220 В. На разъем ХР1 подается энергопитание.

    Собранная схема помещается в пластиковый контейнер. В качестве него подойдет распределительная коробка. К блоку присоединяется розетка и провод с вилкой. Приспособление напоминает удлинитель. В розетку входит вилка угловой шлифмашины. Проверка работоспособности осуществляется при помощи тестера. Сначала определяется отрицательное сопротивление.

    Усложненный метод сбора

    Если имеются определенные навыки или опыт, то можно сделать усложненную схему ровного запуска. Она служит типовой схемой для модуля XS-12. Эта схема установлена во многих моделях электроинструмента, еще на заводе-изготовителе. При желании производить регулировку оборотов нужно установить подстроечный и регулировочный резистор емкостью 100 кОм и 50 кОм соответственно. Но существует и другой способ – поместить переменное напряжение 470 кОм посередине участка резистор-диод. Емкость резистора 47 кОм.

    Питание микросхемы происходит от напряжения 5–35 В. Вспомогательный полупроводниковый диод DZ не требуется, так как цепь питания выдает не более 25 В. Одновременно с конденсатором С2 рекомендуется присоединить резистор на 1 Мом.

    Следует помнить, что при включении подсоединенного к схеме инструмента нужно исключить нагрузку. В противном случае мягкий пуск может сгореть. Для начала нужно подождать достижения полной раскрутки, а потом начинать работу.

    Чтобы продлить срок эксплуатации угловой шлифмашины, иногда не нужно тратиться на дорогую модель. Достаточно будет разработать плавный пуск болгарки своими руками. Тогда ваш инструмент будет обладать надежностью и долгим сроком службы. Тем более приведенная схема многократно использовалась многими умельцами.

    pro-instrument.com

    Главная > Ремонт > Плавный пуск для электроинструмента, сделанный своими руками

    Плавный пуск для любого электроинструмента очень важен по следующим причинам. Во-первых, он помогает защитить электрическое устройство от поломок, что способствует более редким поездкам к мастерам-ремонтникам, а это значит практически полное отсутствие простоев и увеличение производительности труда. Во-вторых, наличие плавного пуска для электродвигателя экономит ваши деньги, которые могли бы пойти на оплату работы ремонтников или на покупку нового инструмента.

    В настоящей статье будет рассмотрено изготовление плавного пуска электродвигателя своими руками на примере болгарки или, иными словами, угловой шлифовальной машины.

    Зачем нужен блок плавного пуска

    В связи с некоторыми конструкционными особенностями, запуск болгарки приводит к появлению динамических нагрузок на устройство. Поскольку масса диска, с помощью которого осуществляется полезная работа, достаточно высока, то на коллекторный электродвигатель и редуктор аппарата воздействует мощные инерционные силы, что приводит к возникновению следующих негативных факторов:

    1. Во время старта, который у болгарки особенно резок, силы инерции очень сильно воздействуют на корпус устройства, что может привести к травме: вы просто не удержите инструмент и выпустите его. Поэтому при запуске электродвигателя болгарки всегда держите её обеими руками.
    2. Во время старта на электродвигатель воздействует перегрузка, вызванная подачей высокого напряжения тока. К чему это приводит? Прежде всего, страдает обмотка двигателя и происходит ускоренный износ щёток, которого не будет, если вы изготовите блок для плавного пуска. В противном случае будьте готовы к тому, что в один не очень прекрасный день в моторе произойдёт короткое замыкание, вызванное полным износом щёток. Это, в свою очередь, заставит вас раскошеливаться на ремонт или покупать новую шлифовальную машину.
    3. Быстро подаваемый крутящий момент на редуктор во время запуска приводит к ускоренному износу шестерёнок в редукторе вашей шлифовальной машины.
    4. Также имейте в виду, что резкий старт болгарки может разрушить диск, осколки которого могут причинить вам серьёзный вред, поэтому никогда не работайте без кожуха для защиты.

    Для того чтобы вам было более понятно, какие элементы шлифовальной машины больше всего страдают от резкого запуска, посмотрите на схему, представленную ниже.

    Конечно, некоторые компании, производящие шлифовальные машины, ещё на заводе комплектуют свои устройства блоком для плавного пуска. Однако, оснащение плавным пуском - это непозволительная роскошь для болгарок, входящих в бюджетный ценовой сегмент, поэтому если вы не хотите покупать дорогой электроинструмент, то вам грозит опасность столкнуться с проблемами, которые были описаны выше.

    Тем не менее, выход есть и он довольно прост: своими руками изготовить устройство для плавного пуска по одной из возможных схем. Если в корпусе вашего аппарата есть свободное место, то вы можете воспользоваться готовым устройством для плавного пуска и поставить его в болгарку.

    Делаем плавный пуск для болгарки своими руками

    Одна из наиболее часто применяемых схем для изготовления пускового устройства основана на микросхеме КР118ПМ1 и симисторах, составляющих силовую часть. По этой схеме вы сможете изготовить блок для плавного пуска, не обладая специализированными навыками и не имея глубоких познаний в электротехнике. Важно лишь то, чтобы вы умели паять.

    Графически эта схема выглядит следующим образом.

    Изготовленное самостоятельно устройство вы можете подключить к абсолютно любому электроинструменту, рассчитанному на напряжение в двести двадцать вольт. Блок плавного пуска, созданный на основе этой схемы, необязательно включать отдельной кнопкой, а можно подключить к штатной клавише шлифовальной машины. Если у вашей болгарки внутри корпуса есть свободное место, то можете установить блок в него либо сделайте для него отдельный корпус и подключите к электроинструменту через разрыв в питающем кабеле.

    Лучшим вариантом соединения блока плавного пуска и вашей шлифовальной машины будет следующий: на вход блока (разъём XS1) вы подаёте напряжение от источника электропитания с напряжением двести двадцать вольт. К выходу блока (разъём XP1) подключается вилка от болгарки.

    Принцип работы блока плавного пуска

    1. После того, как вы нажимаете на кнопку включения шлифовальной машины, в цепи появляется напряжение, которое первоначально направляется на микросхему, которая на схеме выше обозначена как DA1. Конденсатор, регулирующий величину напряжения, постепенно наращивает его до достижения рабочей величины. Из-за работы конденсатора тиристоры в микросхеме открываются с некоторой задержкой и медленно передают напряжение на силовую часть в симисторы VS1.
    2. Описанный выше процесс происходит периодами, которые становятся всё короче и короче, если отсчитывать их с момента запуска. В итоге подаваемое в шлифовальную машину напряжение возрастает медленно, а не скачкообразно, что и обуславливает плавность запуска электродвигателя.
    3. Время, в течение которого двигатель набирает рабочие обороты, зависит от ёмкости используемого конденсатора C2. Как правило, ёмкости, равной сорока семи микрофарадей, вполне достаточно, чтобы болгарка плавно стартовала за две секунды. Обычно этого периода времени хватает, чтобы убрать перегрузку с электродвигателя и редуктора.
    4. После того как вы закончите работу и выключите ваше устройство, резистор R1 своим сопротивлением разряжает конденсатор C1. Если номинал у резистора R1 составляет шестьдесят восемь килоом, то разряд занимает всего три секунды. Затем вы снова можете воспользоваться блоком плавного пуска, поскольку он будет готов к новому запуску шлифмашины.

    Если же вы хотите модернизировать блок до устройства, регулирующего обороты электродвигателя, то вместо постоянного резистора R1 поставьте переменный. В этом случае вы сможете регулировать его сопротивление, а значит влиять на обороты мотора.

    Симистор VS1 в вашем блоке должен соответствовать следующим характеристикам:

    • Сила тока, минимально пропускаемая им, равняется двадцать пять ампер.
    • Максимальное напряжение, на которое он рассчитан, - четыреста вольт.

    Эта испытанная многими мастерами схема была опробована на шлифмашине с мощностью, равной двум киловаттам, и имеет запас прочности по мощности до пяти киловатт, что становится возможным благодаря микросхеме КР118ПМ1.

    tehmaster.guru

    Плавный пуск болгарки

    Современный электроинструмент, выполненный на базе коллекторного электродвигателя переменного тока, практически весь оборудован встроенными устройствами плавного пуска и возможностью регулировки скорости вращения. Старые дрели, болгарки и прочее, легко можно оснастить такими устройствами, выполненными в виде выносного блока, либо встроенными в инструмент. Предлагаю очень простую схему, которая отлично работает и которой я пользуюсь около двух лет. Собрать такое устройство легко может даже начинающий радиолюбитель.

    Принципиальная схема:

    В таком виде схема обеспечивает плавный пуск и выход на номинальную скорость. Время разгона зависит от ёмкости конденсатора С3. Для регулировки скорости резистор R2 должен быть переменным, желательно группы А, или припаять переменник параллельно R2. В последнем случае желательно, чтобы их общее сопротивление было близким к номиналу (от этого зависит максимальное напряжение на двигателе). При желании регулятор можно встроить в рукоятку инструмента, хотя это уже более сложная доработка и, на мой взгляд, совершенно неоправданная. В таком случае проще купить в магазине. Но уж если решились на такую доработку, есть смысл заменить штатный силовой выключатель на слаботочный, что приведет к повышению надежности. Для этого надо параллельно резистору R2 и конденсатору C3 включить микропереключатель, используя нормально замкнутые контакты. У меня данное устройство собрано в корпусе разветвительной коробки, которую можно легко купить в любом магазине электротоваров. В принципе, такой вариант меня вполне устраивает. Последний раз я успешно использовал свою дрель в качестве шуруповерта, без реверса, конечно. Сделать реверс в принципе несложно, достаточно переключить концы одной из обмоток, но эта возня с проводами, с переключателем мне в лом… Симистор у меня стоит ТС 122-25-5, можно ставить практически любой с напряжением не ниже 4-го класса и током не ниже 1,5- 2 номиналов (на случай заклинивания).

    Внимание! Конструкция имеет гальваническую связь с сетью, что небезопасно для Вашей жизни и здоровья! Детали и элементы крепления должны быть изолированы!

    www.radiopill.net

    До этого я никогда не делал устройство плавного пуска. Чисто теоретически, я представлял, как реализовать эту функцию на симисторе, правда такой вариант не без недостатков - потеря мощности и необходим теплоотвод.
    Блуждая по пыльным китайским лабазам, в тщетных попытках в залежах контрафакта и неликвида отыскать что-нибудь стоящее, но не дорогое, наткнулся я на этот товар.

    Бла-бла-бла

    Покупка не была ради покупки, а осознанная необходимость. Задумал я написать обзор в стол поставить ручной фрезер. А он у меня без плавного пуска, стартует резко, саморазрушаясь и руша окружающее его. Мягкий старт и плавный пуск разве не одно и тоже? Сомнения конечно были, хотя я с терморезисторами дел не имел, видел их только в блоках питания компьютеров, всегда думал, что они реагируют на «скачки и всплески», т. е. быстро, но «the voltage to rise slowly» и «after about five seconds» зародили червь сомнения. Да еще и “or other high starting current machine applications.»
    Поскольку отсутствие знаний делает нас расточительными и решительными, я заказал этот девайс и не на секунду об этом не пожалел.


    Вот что пишет про него продавец:
    Мягкий старт блока питания для усилителя класса А, обещая: 4 кВт мощности и 40 А через контакты реле при напряжении AC от 150 В до 280 В. Размер 67 мм x 61 мм x 30 мм, продавец называет его ультра-маленьким – а-ха-ха. Как бы мой фрезер по току в рамки попадает, даже если разделить китайские амперы на два, но в таком размере внутрь корпуса инструмента плата невпихуема.
    И, да, это конструктор. Нужно паять!


    Товар пришел в таком виде, плюс еще для лучшей сохранности был завернут в обрывок газеты на китайском/корейском/японском языке, который пропал, опрос домочадцев и многочисленной челяди ясности не внес, кому и для каких надобностей этот клочек понадобился, поэтому фото газеты нет, сверху был еще пакетик без всякой пупырки.
    Паять легко - все нарисовано и подписано.


    Плата - может кому пригодится


    Спаял:


    Обратная сторона


    Набросал принципиальную схему


    Как работает: при включении у R2 сопротивление большое, напряжение на нагрузке меньше чем 220 V, терморезистор нагревается, сопротивление его стремится к нулю, а напряжение на нагрузке к 220 V. Соответственно двигатель набирает обороты.


    Одновременно с этим выпрямленное и стабилизированное VD2 напряжение (24 V, хотя по первому попавшемуся даташиту должно быть 25, но вольт туда, вольт сюда…) запитывает схему включения реле. Через R1 заряжается конденсатор C3, емкость которого определяет время срабатывания реле. Через 5 секунд открывается транзистор VT2, контакты реле шунтируют терморезистор R2 и двигатель работает на максимальной мощности.
    Гладко было на бумаге… В реальности подключение данного устройства никакого плавного пуска двигателю не обеспечивает, терморезистор нагревается мгновенно, мотор сразу молотит почем зря, только реле издевательски щелкает через 5 секунд. Пробовал двигатель на 150 Вт - эффект тот же.


    Бла-бпа-бла

    Ругал на чем свет стоит китайского купца. Домашние животные, дошколята и приживалки, наблюдавшие за экспериментом, разбежались и попрятались по темным углам, теща на всякий случай достала из рукава пестик. А вот не надо вводить в заблуждение доверчивых русских покупателей. Допил одонки из бутылки, оставшейся с позапрошлой коронации, закусил холодной кулебякой, успокоился… Достал из помойного ведра плату, обобрал с нее подсолнечную шелуху.


    «Если работа проваливается, то всякая попытка ее спасти ухудшит дело», - утверждает Эдвард Мерфи. «Слишком много людей ломаются, даже не подозревая о том, насколько близко к успеху они были в тот момент, когда упали духом,» - спорит с ним Томас Эдисон. Эти две цитаты никакого отношения к делу не имеют, приведены здесь, чтобы показать, что автор отчета не просто охотник за халявой и тупой потребитель китайских товаров, а человек начитанный, приятный собеседник и интеллектуал. Фигли. Но к делу.
    Завалялись у меня в чулане на антресолях в шляпной коробке пара микросхем К1182ПМ1Р.

    Выжимка из даташита:

    Непосредственное применение ИС - для плавного включения и выключения электрических ламп накаливания или регулировки их яркости свечения. Так же успешно ИС может применяться для регулировки скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторами) и для управления более мощными силовыми приборами (тиристорами) .


    На одной из них я и собрал устройство плавного пуска, которое не лишено недостатков, но работает, как надо.


    С1 задает время плавного включения, R1 величину напряжения на нагрузке. У меня максимальное напряжение при 120 ом получилось. При С1 100 мкФ время разгона около 2-х секунд. Поменяв R1 на переменный можно регулировать обороты коллекторного двигателя, без обратной связи естественно (хотя так реализовано на подавляющем большинстве продаваемого электроинструмента). Симистор VS1 любой нашедшейся, подходящий по мощности. У меня завалялся BTA16 600B.


    Обратная сторона


    Все работает.


    Теперь осталось скрестить два устройства, которые взаимно дополняют друг друга, сводя на нет недостатки присущие каждому в отдельности.

    Бла-бла-бла




    В принципе задача несложная для живого, пытливого ума. Выпаял термистор, и выбросил его спрятал до лучших времен, на его место впаял два проводка идущие от катода и анода симистора второй платы. Уменьшил емкость С3 на первой плате до 22 мкФ, что бы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.



    При температуре воздуха 30 град. С температура диодного моста 50 град., стабилитрона 65 град., реле 40 град.
    Все - переделка закончена.

    Бла-бла-бла

    Другой бы, менее уверенный в своих силах, обрадовался бы результату, закатил бы пир горой, устроил бы праздник с медведями и цыганами. Я же просто открыл бутылочку шампанского, заставил девок плясать хороводы во дворе и отменил субботнюю порку.


    Осталось только оформить это все в корпус, уже было хотел, но что-то дома нет пластинки металлической, с помощью которой корпус будет крепиться к столу. Выглядеть будет все примерно так:


    Мои выводы неоднозначны, оценки предвзяты, рекомендации сомнительны.
    Все устал, еще эти коты все время в кадр лезли – замучился гонять. Планирую купить +21 Добавить в избранное Обзор понравился +92 +163

    Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

    Электродвигатели и нагрузки - проблема?

    Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

    Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

    При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

    При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

    Для чего нужен плавный пуск?

    Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

    • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
    • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
    • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
    • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
    • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

    Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

    Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

    Видео: Плавный пуск, регулировка и защита колектор. двигателя

    Варианты систем плавного пуска электродвигателей

    Система «звезда-треугольник»

    Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

    Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

    Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

    Электронная система плавного пуска электродвигателя

    Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

    С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

    В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

    • основная – понижение пускового тока до трёх–четырёх номинальных;
    • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
    • улучшение параметров пуска и торможения;
    • аварийная защита сети от перегрузок по току.

    Однофазная схема пуска

    Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

    Двухфазная схема пуска

    Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

    Трехфазная схема пуска

    Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

    Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

    Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

    Плавный пуск своими руками

    Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов - хоть отбавляй.

    Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

    Недостатком небольших дешевых болгарок является отсутствие плавного пуска и регулировки оборотов. Каждый, кто включал мощный электроприбор в сеть, замечал как в этот момент падает яркость сетевого освещения. Это происходит из-за того, что мощные электроприборы в момент запуска потребляют огромный ток, соответственно, проседает напряжение в сети. Сам инструмент может выйти из строя, особенно китайский с ненадежными обмотками.

    Система мягкого пуска защитит и сеть, и инструмент. Также не будет сильной отдачи (толчка) в момент включения. А регулятор оборотов позволит долго работать без перегрузки инструмента.

    Представленная схема срисована с промышленного образца, устанавливаемая на дорогие приборы. Ее можно использовать не только для болгарки, но и для дрели, фрезерного станка и др., где стоит коллекторный двигатель. Для асинхронных двигателей схема не подойдет, там требуется частотный преобразователь.

    Сначала нарисовал печатную плату для системы плавного пуска, без компонентов для регулировки оборотов. Это сделано специально, т.к. в любом случае регулятор надо выводить проводами. Имея схему каждый сам разберется что куда подключить.

    В схеме регулирующим элементом является сдвоенный операционный усилитель LM358, через транзистор VD1 управляющий силовым симистором BTA20-600. Я не достал его в магазине и поставил BTA28 (более мощный). Для инструмента до 1кВт подойдет любой симистор с напряжением более 600В и током 10-12А. Т.к. схема имеет мягкий старт, то пусковые токи не спалят такой симистор. В ходе работы симистор нагревается и его следует установить на радиатор.

    Известно явление самоиндукции, которое наблюдается при размыкании цепи с индуктивной нагрузкой. В нашей схеме цепь R1-C1 гасит самоиндукцию при выключении болгарки и защищает симистор от пробоя. R1 от 47 до 68 Ом, мощностью 1-2Вт. Конденсатор пленочный на 400В.

    Резистор R2 обеспечивает ограничение тока для низковольтной части цепи управления. Сама эта часть является и нагрузкой, и в какой-то мере, стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя есть вариант такой же схемы с дополнительным стабилитроном. Я его не поставил, т.к. напряжение питания микросхемы, итак, в пределах нормы.

    Возможные замены маломощных транзисторов указаны под схемой.

    Подстройку регулятора делают с помощью многооборотного резистора R14, а основную регулировку резистором R5. Схема не дает регулировку мощности от 0, а только от 30 до 100%. Если же нужен более простой мощный регулятор от 0, то можно собрать вариант проверенный годами. Правда для болгарки получение минимальной мощности бессмысленно.